Revisiting useful approaches to data-rich macroeconomic forecasting

نویسندگان

  • Jan J. J. Groen
  • George Kapetanios
چکیده

We compare a number of data-rich prediction methods that are widely used in macroeconomic forecasting with a lesser known alternative: partial least squares (PLS) regression. In this method, linear, orthogonal combinations of a large number of predictor variables are constructed such that the covariance between a target variable and these common components is maximized. We show theoretically that when the data have a factor structure, PLS regression can be seen as an alternative way to approximate this unobserved factor structure. In addition, we prove that when a large data set has a weak factor structure, which possibly vanishes in the limit, PLS regression still provides asymptotically the best fit for the target variable of interest. Monte Carlo experiments confirm our theoretical results that PLS regression performs at least as well as principal components regression and rivals Bayesian regression when the data have a factor structure. But when the factor structure in the data is weak, PLS regression outperforms both principal components and Bayesian regressions. Finally, we apply PLS, principal components, and Bayesian regressions to a large panel of monthly U.S. macroeconomic data to forecast key variables across different subperiods. The results indicate that PLS regression usually has the best out-of-sample performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?

Much of the inflation forecasting literature examines the ability of macroeconomic indicators to accurately predict mean inflation. For the period after 1984, existing empirical evidence largely suggests that the likelihood of accurately predicting inflation using macroeconomic indicators is no better than a random walk model. We expand the scope of inflation predictability by exploring whether...

متن کامل

Revisiting the Greenbook’s Relative Forecasting Performance

Since Romer and Romer (2000), a large literature has dealt with the relative forecasting performance of Greenbook macroeconomic forecasts of the Federal Reserve. This paper empirically reviews the existing results by comparing the different methods, data and samples used previously. The sample period is extended compared to previous studies and both real-time and final data are considered. We c...

متن کامل

The Past, Present, and Future of Macroeconomic Forecasting

Broadly defined, macroeconomic forecasting is alive and well. Nonstructural forecasting, which is based largely on reduced-form correlations, has always been well and continues to improve. Structural forecasting, which aligns itself with economic theory and hence rises and falls with theory, receded following the decline of Keynesian theory. In recent years, however, powerful new dynamic stocha...

متن کامل

Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach

This paper suggests a term structure model which parsimoniously exploits a broad macroeconomic information set. The model uses the short rate and the common components of a large number of macroeconomic variables as factors. Precisely, the dynamics of the short rate are modeled with a FactorAugmented Vector Autoregression and the term structure is derived using parameter restrictions implied by...

متن کامل

The State of Macroeconomic Forecasting

Macroeconomic forecasts are used extensively in industry and government The historical accuracy of US and UK forecasts are examined in the light of different approaches to evaluating macro forecasts. Issues discussed include the comparative accuracy of macroeconometric models compared to their time series alternatives, whether the forecasting record has improved over time, the rationality of ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2016